Click here to see other posts about Raman spectroscopy
Only 10 $ for interpretation of your Raman spectrum Payment Upon Completion Contact us...
Light interacts with matter in different ways, transmitting through some materials, while reflecting or scattering off others. Both the material and the colour (wavelength) of the light affect this interaction. We call the study of this light ‘spectroscopy’. Which parts of the visible spectrum enter our eyes determines which colours we perceive.
A substance might appear blue, for example, if it absorbs the red parts of the spectrum of light falling upon it, only reflecting (or scattering) the blue parts into our eyes.
Raman spectroscopy looks at the scattered light
If you were to shine blue light—from just one part of the spectrum—onto the material, you might expect to just see blue light reflected from it, or no light at all if it is completely absorbed (i.e. a black material).
However, by using a Raman spectrometer, you can see that often a very tiny fraction of the scattered light has a different colour. It has changed frequency because, during the scattering process, its energy changed by interacting with molecular vibrations. This is the Raman scattering process, named after its discoverer, the famous Indian physicist C.V. Raman. He was awarded the 1930 physics Nobel Prize for this great discovery.
By studying the vibration of the atoms we can discover the chemical composition and other useful information about the material.
The Raman effect is very weak; only about 1 part in 10 million of the scattered light has a shifted colour. This is too weak to see with the naked eye, so we analyse the light with a highly sensitive spectrometer.
Raman spectrometers
These systems consist of:
- one or more single coloured light sources (lasers)
- lenses (both to focus the light onto the sample and to collect the scattered light)
- filters (to purify the reflected and scattered light so that only the Raman light is collected)
- a means of splitting the light into its constituent colours (normally a diffraction grating or prism)
- a very sensitive detector (to detect the weak light)
- a device such as a computer to control the whole system, display the spectrum and enable this information to be analysed
Raman scattering offers significant advantages for the investigation of materials over other analytical techniques, such as x-raying them or seeing how they absorb light (e.g. infrared absorption or ultraviolet absorption).
aman spectroscopy reveals the chemical and structural composition of samples. Generally, all materials produce Raman spectra, with the exception of pure metals.
Raman scattering
Raman scattering occurs when light interacts with molecular vibrations. This is similar to the more widely known infrared absorption spectroscopy, but different rules apply. A change in molecular polarisability is required during the vibration for the Raman effect to occur.
You will see some vibrations in the Raman spectrum that are not visible in the infrared spectrum, and vice-versa, because of the different selection rules. For example, Raman spectroscopy is superb for studying the carbon atoms that make up the structure of diamond, unlike infrared absorption spectroscopy.
Scattered light
The first step in producing a Raman spectrum is to illuminate your sample with a monochromatic light source, such as a laser.
Most of the light that scatters off is unchanged in energy (‘Rayleigh scattered’). A minute fraction—perhaps 1 part in 10 million—has lost or gained energy (‘Raman scattered’). This Raman shift occurs because photons (particles of light) exchange part of their energy with molecular vibrations in the material.
Where energy is lost the Raman scattering is designated as ‘Stokes’; where energy is gained the Raman scattering is designated as ‘anti-Stokes’. We rarely use anti-Stokes Raman light as it is less intense than the Stokes, however it does represent equivalent vibrational information of the molecule.
Vibrating atoms
The change in energy depends on the frequency of vibration of the molecule. If it is very fast (high frequency)—light atoms held together with strong bonds—the energy change is significant. If it is very slow (low frequency)—heavy atoms held together with weak bonds—the energy change is small.
Raman spectrometers
Renishaw inVia systems consist of:
- single or multiple lasers, from UV (244 nm) to IR (1064 nm) – switch with a single click
- high quality objective lenses, from high confocal 100× to long working distance and immersion options
- custom designed motorised spectrometer lenses – automatically align for each configuration
- laser-line-specific Rayleigh filters with a dual filter arrangement to optimise sensitivity
- highest quality master diffraction gratings provide exceptional dispersion and longevity
- thermoelectrically cooled (- 70 ºC) CCD detector – stable and sensitive
- high specification multi-core PC for data collection and analysis
Raman spectra
We graphically depict the results of our measurements as Raman spectra. We plot the intensity of the scattered light (y-axis) for each energy (frequency) of light (x-axis). The frequency is traditionally measured in a unit called the wavenumber (number of waves per cm, cm-1).
We plot the x-axis frequencies relative to that of the laser as it is the shift in energy of the light that is of particular interest.
How do I get the information I want from my spectrum?
You can tell a great deal about a material from its Raman spectrum, with different features relating to different aspects of the material.
The key features are:
The Raman shifts and relative intensities of all of the Raman bands of the material
With this, we can identify the material.
Individual band changes
A band may shift, narrow or broaden, or vary in intensity. These changes can reveal information about stresses in the sample, variations in crystallinity, and the amount of material respectively.
Variations in spectra with position on the sample
This will reveal changes in the uniformity (homogeneity) of the material. You can analyse at several arbitrary points, or systematically measure an array of points (enabling the production of images of composition, stress, crystallinity, etc.)
What do the Raman bands represent?
It is easy to understand the Raman spectrum of crystals with a regular array of identical atoms, all in the same configuration (such as the carbon atoms in diamond). In these cases, you often see just one dominant Raman band (because there is just one molecular environment of the crystal).
The Raman spectrum of polystyrene, however, is much more complex because the molecule is less symmetric and has hydrogen atoms in addition to carbon atoms. There are also different bond types connecting the atoms.
Vibration frequencies
The frequencies of vibration depend on the masses of the atoms involved and the strength of the bonds between them. Heavy atoms and weak bonds have low Raman shifts. Light atoms and strong bonds have high Raman shifts.
We see the high frequency carbon-hydrogen (C-H) vibrations in the polystyrene spectrum at about 3000 cm-1. The low frequency carbon-carbon (C-C) vibrations are at around 800 cm-1. The C-H vibrations have a higher frequency than the C-C vibrations because hydrogen is lighter than carbon.
We see the vibrations of two carbon atoms linked by strong double bonds (C=C) at around 1600 cm-1. This is at a higher frequency than two carbon atoms lined by a weaker single bond (C-C, 800 cm-1).
You can use these simple rules to explain many of the features of Raman spectra.
Vibrations in detail
You can see more subtle effects if you inspect spectra closely. The strength of bonds also affects their vibration rates. For example, the C-H vibrations of polystyrene appear in two bands, at approximately 2900 cm-1 and 3050 cm-1. The carbons in the former are part of carbon chains (‘aliphatic’), whereas the carbons in the latter form part of carbon rings (‘aromatic’).
You can view the vibrations of a complex molecule as partly consisting of many simple diatomic vibrations. However the full richness of the Raman spectrum can only be understood by considering the vibrations of larger groups of atoms (such as the expanding/contracting ‘breathing mode’ of the aromatic carbon ring that appears at 1000 cm-1 in polystyrene).
Low frequency vibrations
You can also study Raman bands with low Raman shifts, below 100 cm-1. These originate from very heavy atoms or very large-scale vibrations, such as the whole crystal lattice vibrating. Renishaw’s Raman instruments enable you to study these modes and explore a wide range of materials and crystals, and distinguish between different crystalline forms (polymorphs).
The big picture
A Raman spectrum therefore consists of a range of features, each associated with a vibrational mode. The spectrum is unique to the material and enables you to identify it. It is important to note that, although a full understanding of the vibrational modes is of interest, you rarely need this as you can use a reference database for identification.
When a sample is illuminated by a laser, both Raman scattering and photoluminescence (PL) can occur. The latter can be many times stronger than the former and can prevent successful Raman analysis.
PL comprises both fluorescence and phosphorescence processes and originates from an absorption/emission process between different electronic energy levels in the material. The amount and type of PL depends on which material you are studying and which laser wavelength you are using. Unwanted fluorescence interference can normally be avoided by choosing an appropriate laser wavelength.
- Energy diagram showing absorption of light and the processes involved in the emission of light as fluorescence and phosphorescence.
What PL can tell us
In many cases photoluminescence carries useful information that can facilitate sample analysis and augment the Raman data. inVia confocal Raman microscopes are suited to the analysis of both Raman scattering and PL.
Fluorescence imaging (a type of PL) is often employed in the biological sciences, where fluorescent tags are used to reveal the presence and distribution of molecular species. However, this approach is more invasive than Raman analysis, which is typically tag-free. Renishaw’s inVia confocal Raman microscope can be used to generate images of fluorescent tags, but more commonly provides valuable tag-free chemical information.
You can also use PL to study crystal defects, such as atomic vacancies and substitutions. This is of particular importance for materials such as diamond and silicon carbide (SiC). Not only can you identify the defect, but you can also tell if the crystal has internal stresses.
How to avoid PL backgrounds
Occasionally PL bands are strong and broad, masking Raman information. You can counter this by using a different laser wavelength. This can move the Raman bands away from the peak emission of the PL band and may even avoid generation of the PL entirely.
Ideally, a Raman instrument should be able to switch rapidly and easily between different laser wavelengths, so that you can select or avoid PL features, depending on your requirements.
Raman images (sometimes referred to as maps) depict a variation in spectral information from different points on, or in your sample. They can take the form of one-dimensional profiles, two-dimensional images, or three-dimensional rendered volumes. With them, you can rapidly see how a Raman parameter alters with position.
The parameter could be as simple as the intensity of a particular Raman band, or you could derive it from a more complicated analysis of the whole Raman spectrum.
The two main methods of collecting the spectral data to generate these images are Raman mapping and Raman imaging.
Raman mapping
Raman mapping collects a spectral hypercube (a Raman spectrum from each position on the sample in a single file), rather than a simple intensity image. The hypercube is analysed to produce Raman images.
There are several Raman mapping methods, such as:
- Point-by-point mapping
The laser is focused to a spot. A motorised stage moves the sample under the laser. Spectra are sequentially acquired from an array of sample points spanning the defined region of interest. Fast versions of this are Renishaw’s StreamHR™ and StreamHR Rapide. - Line focus mapping
This is similar to point-by-point mapping, but the laser illuminates a line on the sample, rather than a spot. This enables you to simultaneously collect spectra from multiple positions on the sample, saving time. With this method you can use higher laser powers without damaging the sample (reducing exposure times). Renishaw’s StreamLine™ is a sophisticated modern implementation of this concept.
It is important to consider the potentially undesirable effects of undersampling when mapping. This is most clearly illustrated when point-by-point mapping: parts of the sample will be ‘missed’ if the laser spot is smaller than the spacing between acquisition points. Renishaw has solved this problem through the use of the StreamLine™ Slalom mode.
Generating Raman images from map data
Once all the Raman spectra are collected from the mapping experiment, they can be analysed to produce profiles, images or rendered volumes. Analysis options in Renishaw’s WiRE software include:
- Intensity at one frequency in the spectrum
This produces an equivalent image to that from Raman imaging. These are quick to generate but may be misleading because it is not possible to differentiate between intensities arising from a Raman band of interest and those associated with a broad background fluorescence. - Curve fit parameters
All the spectra in the set have a theoretical curve fitted to one of the Raman bands. Images are then made based on the theoretical curve parameters for each spectrum. Images are often made using the centre frequency of the curve (band), or the full width at half maximum (FWHM), as this is sensitive to stresses and crystallinity within the sample respectively. - Multivariate parameters
Images can be generated using chemometric tools, such as generic principal component analysis (PCA), or Renishaw’s Empty Modelling™, which is optimised for Raman data. The Empty Modelling method reveals systematic variations between the Raman spectra, and highlights the distribution of these variations across the sample as an image. This is achieved without the need for prior knowledge of what is present within the sample, which greatly simplifies the analysis process. Multivariate analysis is very powerful because it uses information from the entire spectrum, not just one part of it (intensity at one frequency) or one curve-fitted band. This typically results in higher quality Raman images.
Raman imaging
Raman imaging is analogous to taking a photograph; spectral intensity values are collected simultaneously from the entire area of interest. The laser illuminates a square or circular region on the sample. The light is filtered so that the intensity of just one narrow part of the spectrum is recorded on the detector.
The single image collected contains limited information, just the intensity of the light at that frequency. However, these images can be acquired rapidly. This is especially true if you have a high power laser; because the light is spread over an area, you can use all the power without damaging your samples, with correspondingly short exposure times.
Two-dimensional images are typically produced using this method. Renishaw’s True Raman Imaging is an example of Raman imaging.
Note that it is possible to collect intensity values covering multiple points of the spectrum by using multiple and/or tuneable filters.
Spatial resolution
Point-by-point Raman mapping
Spatial resolution is determined by a combination of the laser spot size and the spacing between acquisition points on the sample.
- Laser spot size
This is a function of the objective magnification and the laser wavelength (higher magnification and shorter wavelengths produce smaller spot sizes) - Spacing between acquisition points on the sample (sampling)
This is a function of the sample stage (ideally stages should have a large travel range while still enabling a step size down to 100 nm, smaller than the smallest spot size)
Raman imaging
Spatial resolution is determined by the magnification of the optics in the system and the size of the elements in the detector. Ultimately this is limited, by the inherent wavelike nature of light, to a little under a micrometre.
i tip my silicon hat to a good article